Формализованные методы прогнозирования и планирования

  Основой формализованных методов прогнозирования является математическая теория, повышающая достоверность, точность прогнозов, облегчающая обработку информации и результатов прогноза, значительно сокращающая сроки его производства.

Формализованные методы прогнозирования можно разделить на две группы: методы экстраполяции и методы математического моделирования. Экстраполяция заключается в изучении сложившихся в прошлом и настоящем устойчивых тенденций экономического развития и перенесении их на будущее. При простой экстраполяции все действующие ранее факторы, обуславливающие исследуемую тенденцию в прошлом и настоящем, останутся неизмененными и в будущем. Однако сохранение тенденций прошлого и настоящего неизменными для будущего чаще всего маловероятно. И поэтому хотя экстраполяция лежит в основе всякого прогноза, она способна давать эффект только в очень узком диапазоне времени относительно не особенно сложного процесса.
Следует различать формальную и прогнозную экстраполяцию. Формальная базируется на предположении о сохранении в будущем прошлых и настоящих тенденций развития объекта. При прогнозной фактическое увязывается с гипотезами о динамике исследуемого объекта, учитываются в перспективе альтернативные изменения самого объекта, его сущности.
В основе экстраполяционных методов прогнозирования лежит изучение временных рядов, представляющих собой упорядоченные во времени наборы измерений различных характеристик исследуемого объекта прогнозирования. Экстраполяция в прогнозировании предполагает, что рассматриваемый процесс изменения переменной является сочетанием двух составляющих хг - регулярной (детерминированная неслучай-

ная) и ех - случайной. Временной ряд уг может быть представлен в виде
(1)



Регулярная составляющая называется трендом, тенденцией. В этих терминах заключено интуитивное представление об очищенной от помех сущности анализируемого процесса (интуитивное потому, что для большинства процессов нельзя однозначно отделить тренд от случайной составляющей). Регулярная составляющая (тренд) хг характеризует динамику развития процесса в целом, случайная составляющая е% отражает случайные колебания или шумы процесса. Обе составляющие процесса определяются функциональным механизмом, характеризующим их поведение во времени.
Задача прогноза состоит в определении вида экстраполирующих функций х% и ег на основе исходных эмпирических данных и параметров выбранной функции. Первым этапом является выбор оптимального вида функции, дающей наилучшее описание тренда. Следующий этап - расчет параметров выбранной экстраполяционной функции.
При оценке параметров зависимостей наиболее распространены метод наименьших квадратов и его модификации, метод экспоненциального сглаживания, метод адаптивного сглаживания, метод скользящей средней и др. Метод наименьших квадратов (МНК) требует найти параметры модели тренда, минимизирующие ее отклонение от точек исходного временного ряда, т.е. минимизировать сумму квадратических отклонений между наблюдаемыми и расчетными величинами.
П ( А
5=1 У1~У1
А
где у1 - расчетные значения исходного ряда;
у. - фактическое значение исходного ряда; п - число наблюдений.
п

Модель тренда может иметь различный вид, ее выбор в каждом конкретном случае осуществляется по ряду статистических критериев. В практических исследованиях наиболее часто применяются:
у = ах + Ъ (линейная);
у = ах2 +Ь + с (квадратичная);
у - хп (степенная);
у = ах (показательная);
у = аех (экспоненциальная);
а
У -              (логистическая).
Широко применяется линейная функция, или линеаризуемая, т.е. сводимая к линейной, как наиболее простая и отвечающая исходным данным.
Классический метод наименьших квадратов предполагает равноценность исходной информации в модели. В реальной практике будущее поведение процесса определяется поздними наблюдениями в большей степени, чем ранними. Уменьшение ценности более ранней информации (дисконтирование) можно учесть, например, путем введения в модель (2) некоторых весов В. lt; 1. Тогда



(9)
Коэффициент может быть представлен в различном виде: числовой формой, функциональной зависимостью, но таким образом, чтобы по мере продвижения в прошлое веса убывали.

Для этого используются модификации метода наименьших квадратов.
Метод наименьших квадратов широко применяется в прогнозировании в силу его простоты и возможности реализации на ЭВМ. Недостаток метода в том, что модель тренда жестко фиксируется, а это делает возможным его применение только при небольших периодах упреждения, т.е. при краткосрочном прогнозировании.
Метод экспоненциального сглаживания дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения, то есть он позволяет оценить параметры модели, описывающей тенденцию, которая сформировалась в конце базисного периода, и тем самым не просто экстраполирует действующие зависимости в будущее, а приспосабливается, адаптируется к изменяющимся во времени условиям. Преимущества метода в том, что он не требует обширной информационной базы, а предполагает ее интенсивный анализ с точки зрения информационной ценности различных членов временной последовательности. Модели, описывающие динамику показателя, имеют простую математическую формулировку, а адаптивная эволюция параметров позволяет отразить неоднородность и текучесть свойств временного ряда. Метод применяется при кратко- и среднесрочном прогнозировании.
Метод скользящей средней дает возможность выравнивать динамический ряд путем его расчленения на равные части с обязательным совпадением в каждой из них сумм модельных и эмпирических значений.
К экстраполяционным относится и метод, получивший название «цепи Маркова». В основе прогноза, построенного на основе простых цепей Маркова, лежит вычисление матрицы перехода, элементами которой являются вероятности перехода прогнозируемых параметров из одного состояния в другое, от
одного значения к другому. Если мы имеем А = {т.е.
матрицу прогнозируемых показателей размерности (т х Т), где Аи - значение /-того показателя в момент времени t, и если
известна матрица перехода Р , то прогноз вычисляется следующим образом:
А+1 = рЛ;А+2 = ^2А--А+* = -р*А ,              lt;10)
где - вектор значений прогнозируемых показателей в момент t.
Процедура вычисления элементов матрицы перехода
р = {р1} }„ г, у = 1Гй              (П)
предполагает определение суммарных изменений показателей Аи для каждого момента времени t, т.е.
,?А=т=г?              lt;12gt;
(если мы прогнозируем потребности, то это и будет суммарная потребность ресурсов по годам).
Затем определяем значения цепных индексов для величин
А
Г =-4- = 1 ,Т
На основе цепных индексов определяем возможные значения прогнозируемых показателей при неизменности структуры в моменты (?+1):
5 = Ь?и_ = Ьл = ]7т,
I              t
т.е. индекс умножаем на значение этого показателя в соответствующий момент (?+1).

Элементы Би образуют матрицу = } размерности (пхТ).
Рассогласование между реальным изменением показателей Аы и гипотетическим находим как их разность:
А?*, *+1 = А^ #+1 — 8и .
Эти величины рассогласования определяют изменение структуры исследуемого процесса (если это потребление, то структуры потребления ресурсов) и представляют собой образующий вектор
А?м+1 = (А?т)=              ••• * А?П,*+1) .
Затем образуется нормированный вектор, определяющий изменение значения г-того показателя в (? + 1) году по сравнению с t-м годом. Определяется он по формуле
1
х‘м - -              (13)
? + 1 *=1
Полученные величины позволяют формировать ?-тую строку матрицы соответствующего перехода Рт.
По аналогичной схеме рассчитываются последовательно матрицы перехода для различных моментов времени. Непосредственно прогноз реализуется по формуле (10).
Реализация прогнозов с помощью цепей Маркова позволяет по мере поступления новой информации регулярно корректировать ошибки, учитывать информационную неточность прогноза, что повышает надежность получаемых результатов.
Этот метод может быть использован для прогноза множества показателей, которые меняются из года в год одновременно, но между ними непосредственно функциональные связи не установлены ввиду отсутствия информации или крайней сложности этих связей. Примером может служить прогноз потребностей отраслей народного хозяйства в ресурсах. При реализации данного прогноза устанавливаются на перспективу не только объемы, но и сама структура потребления ресурсов различными отраслями.

Методы экстраполяции, основанные на продлении тенденции прошлого и настоящего на будущий период, могут использоваться в прогнозировании лишь при периоде упреждения в 3-5 лет. При более длительных сроках прогноза они не дают точных результатов. С помощью методов экстраполяции исследуются количественные параметры больших систем, количественные характеристики экономического, научного и производственного потенциалов, данные о результативности науч- но-технического прогресса, характеристики соотношения отдельных подсистем, блоков и т.д.
Большую группу формализованных методов прогнозирования составляют методы моделирования. С их помощью конструируются модели на основе предварительного изучения объекта и выделения его существенных характеристик, проводится экспериментальный и теоретический анализ модели, сопоставляются результаты с данными объекта, корректируется модель. Моделирование широко распространено не только в прогнозировании, но и в планировании. Толчком к развитию формализованных методов, и в том числе методов моделирования, послужило применение электронно-вычислительных машин (ЭВМ). В их развитии обозначился новый этап - этап эко- номико-математических методов (ЭММ), соединивших в себе математическую теорию и возможности ЭВМ.
Основанные на методах прикладной математики и математической статистики ЭММ и ЭВМ позволили значительно расширить возможности применения и направления использования формализованных методов. Так, стало возможно глубже вскрыть взаимосвязи в народном хозяйстве, всесторонне обосновывать изменения экономических показателей, ускорить получение и обработку информации, осуществлять многовариантные расчеты планов-прогнозов, программ и выбирать оптимальный вариант по заданному критерию.
В планировании и прогнозировании выделяют различные виды (типы) моделей: оптимизационные, факторные, структурные, модели межотраслевого баланса и др. В зависимости от уровня агрегирования один и тот же тип может применяться к различным экономическим объектам, поэтому выделяют модели: макроэкономические, межотраслевые, межрайонные, от
раслевые, региональные и микроэкономические (на уровне предприятия, объединения).
Экономико-математическая модель любого вида представляет собой формализованное описание исследуемого процесса или объекта в виде математических зависимостей и отношений.
Оптимизационные модели основаны на выборе критерия оптимальности, на основе которго путем сравнения различных вариантов выбирается лучший (оптимальный) вариант. Оптимизационная экономико-математическая модель состоит из целевой функции и системы ограничений. Целевая функция описывает цель оптимизации и отражает зависимость показателя, по которому ведется оптимизация, от независимых переменных (ограничений). Система ограничений отражает объективные экономические связи и зависимости и представляет собой систему равенств и неравенств, например, между потреблением ресурсов или величинами технико-экономических показателей и установленными лимитами, а также пределами выпуска продукции. Влияние каждой из переменных на величину целевой функции выражается коэффициентом-показателем, экстремум которого выступает критерием оптимальности. Примеры оптимизационных моделей в планировании и прогнозировании: модели оптимизации развития и размещения производств, модели оптимизации структуры производства продукции отраслей промышленности, модели АПК, модели транспортных задач, с помощью которых осуществляется рациональное прикрепление поставщиков к потребителям и определяются минимальные транспортные затраты, и другие.
Примерами макроэкономических моделей могут служить статическая и динамическая модели межотраслевого баланса.
Статическая модель имеет вид:






х. - валовое производство у-й отрасли-потребителя (у = 1, п); х. - валовое производство продукции 1-и отрасли-поставщика (1=1, п);
у. - объем конечной продукции г-й отрасли.
При этом УЦ1ацх] представляет собой промежуточный продукт (количество продукции 1-й отрасли, используемой в у'-й отрасли в процессе производства).
Статистическая модель межотраслевого баланса может выражаться и таким образом:



где Ъ.. - коэффициент полных материальных затрат, отражающий величину продукции 1-й отрасли, необходимой на всех стадиях производства для получения единицы конечной продукции у-й отрасли.
Коэффициенты прямых и полных затрат отличаются тем, что первые определяются в расчете на единицу валового выпуска отрасли и являются среднеотраслевыми, а вторые рассчитываются на единицу конечной продукции и являются народнохозяйственными. Коэффициенты полных затрат превышают коэффициенты прямых на величину косвенных затрат.
Динамическая модель межотраслевого баланса характеризует производственные связи народного хозяйства за ряд лет (т.е. отражает процесс воспроизводства в динамике) и обеспечивает увязку плана-прогноза производства продукции с планом-прогнозом капитальных вложений. Упрощенная модель имеет вид



где t - индекс года; АФу - продукция *-й отрасли, направляемая как производственные капитальные вложения для расширения производства в у-ую отрасль; Z. - сумма конечной продукции /-й отрасли, за исключением продукции, направленной на расширение производства.
Корреляционно-регрессионный метод дает возможность количественно исследовать влияние разнообразных факторов на уровень параметра, характеризующего планируемое (прогнозируемое) явление или процесс, позволяет отделить мнимые связи от действительных и в математической форме (через уравнение регрессии) выразить эту связь и раскрыть действие факторов на этот параметр. Корреляционно-регрессионный метод широко распространен и решает две основные задачи:
  • устанавливает степень тесноты связи между планируемым (прогнозируемым) параметром и влияющими на него факторами;
  • определяет с помощью уравнений регрессии форму связи между планируемым (прогнозируемым) параметром и влияющими на него факторами.

Степень тесноты связи между параметром и отдельно взятым фактором показывает парный коэффициент корреляции (г), а совокупное влияние отобранных факторов планируемых (прогнозируемых) параметров - множественный коэффициент корреляции (К). Парный коэффициент корреляции может выступать одним из критериев отбора факторов. Его величина колеблется от -1 до +1, и чем выше значение г, тем теснее связь между переменными (параметром и фактором).
Мера совместного воздействия всех факторов на уровень параметра определяется на основе коэффициента множественной корреляции. Чем больше совокупное влияние отобранных факторов, тем ближе множественный коэффициент корреляции к единице.
Форму связи между планируемым параметром (у) и влияющими на него факторами (х^ х2... хп) выражает уравнение регрессии. Форма связи может быть линейной и криволинейной. Линейная форма корреляционной связи выражается уравнениями:
ух = а + Ьх
ух =а + Ъ1х1+Ъ2х2+... + Ьпхп ,
где ух - значение у при заданном значении х или (х, х1... хп);
а,              Ь, Ь1... Ьп - параметры уравнения; х, х1... хп - значения фактора.
Параметр уравнения «а» определяет положение начальной точки линии регрессии в системе координат. Параметры «Ъ» и «Ъ1... Ьп» характеризуют норму изменения у на единицу х,хг..хп.
Уравнение линейной регрессии имеет широкое применение, его параметры легче определить и истолковать. Но на практике чаще встречается нелинейная корреляционная зависимость, которая может быть представлена через уравнения различных типов кривых: гиперболическую форму связи (ух = а/х + Ъ), параболу второго порядка (ух = а 4- а1х1 + а2х2) и другие. Чем лучше уравнение регрессии описывает процесс, тем ближе значение коэффициента корреляции к единице.
В планировании и прогнозировании корреляционно-регрессионный метод позволяет определить возможный уровень параметра, складывающийся под влиянием различных факторов.
  1.   
<< | >>
Источник: Антонова Н.Б.. Государственное регулирование экономики: Учебник / Антонова Н.Б. - Мн: Академия управления при Президенте Республики Беларусь, - 775 с.. 2002

Еще по теме Формализованные методы прогнозирования и планирования:

  1. 3.3 Формализованные методы прогнозирования.
  2. Формализованные методы прогнозирования
  3. Методы прогнозирования и планирования, их классификация. Интуитивные методы
  4. Методы прогнозирования и планирования
  5. 5.І. Система методов прогнозирования и планирования
  6. Система методов прогнозирования и планирования
  7. Глава 5 МЕТОДЫ ПРОГНОЗИРОВАНИЯ И ПЛАНИРОВАНИЯ
  8. ТЕМА 4. МЕТОДЫ ПРОГНОЗИРОВАНИЯ И ПЛАНИРОВАНИЯ
  9. ГЛАВА 6. МЕТОДЫ ПЛАНИРОВАНИЯ И ПРОГНОЗИРОВАНИЯ
  10. Методы планирования и прогнозирования инвестиций
  11. Методы прогнозирования и планирования инвестиций
  12. Характеристика финансов, методы их прогнозирования и планирования
  13. Фактографические (формализованные) методы
  14. Методы прогнозирования и планирования НТП и инновационной деятельности
  15. Методы прогнозирования и планирования НТП и инновационной деятельности
- Регулирование и развитие инновационной деятельности - Антикризисное управление - Аудит - Банковское дело - Бизнес-курс MBA - Биржевая торговля - Бухгалтерский и финансовый учет - Бухучет в отраслях экономики - Бюджетная система - Государственное регулирование экономики - Государственные и муниципальные финансы - Инновации - Институциональная экономика - Информационные системы в экономике - Исследования в экономике - История экономики - Коммерческая деятельность предприятия - Лизинг - Логистика - Макроэкономика - Международная экономика - Микроэкономика - Мировая экономика - Налоги - Оценка и оценочная деятельность - Планирование и контроль на предприятии - Прогнозирование социально-экономических процессов - Региональная экономика - Статистика - Страхование - Транспортное право - Управление финасами - Финансовый анализ - Финансовый менеджмент - Финансы и кредит - Экономика в отрасли - Экономика общественного сектора - Экономика отраслевых рынков - Экономика предприятия - Экономика природопользования - Экономика труда - Экономическая теория - Экономический анализ -