6.6.Инженерно-экологические изыскания для экологического обоснования градостроительных проектов

  Инженерно-экологические исследования для проектов градостроительства имеют свою специфику, которая состоит в том, что в первую очередь оценивается качество городской среды и различные виды воздействия на нее с точки зрения жизнедеятнльности населения.
Экогеохимические исследования городской среды или территории под застройку ставят своей целью выявление ареалов загрязнения, анализ миграционных особенностей загрязнителей, оценку природных потенциалов загрязнения, чтобы определить возможность использования территорий под градостроительство.
При маршрутном геоэкологическом обследовании застроенных территорий рекомендуют: обход города (совместно, со специалистами природоохранных служб) и составление схемы расположения предприятий, уточнение местоположения свалок, полигонов твердых бытовых отходов (ТБО), шлако- и хвостохранилищ, отстойников, нефтехранилищ и других источников антропогенного воздействия. Проводят опрос местных жителей об использовании территории в последние 40-50 лет для фиксирования участков размещения ныне ликвидиронанных промышленных предприятий, утечек из коммуникаций, прорывов свалок и коллекторов сточных вод, аварийных выбросов, захоронения радиоактивных отходов. Выявленные сведения наносят на карты. Собирают фактический материал визуальных признаков загрязнения (пятен мазута, химикатов, нефтепродуктов, мест хранения удобрений, несанкционированных сваток пищевых и бытовых отходов, источников резкого химического запаха, метанопроявления, источников шума, вибрации и других физических воздействий). Цель маршрутных экологических наблюдений — получение количественных  и качественных показателей и характеристик состояния всех компонентов и элементов ландшафтов, а также ландшафта в целом (ландшафтно-экологические исследования).
Геоэкологическое опробование атмосферы, почв, грунтов, поверхностных и подземных вод на селитебных территориях и в зонах влияния хозяйственных объектов осуществляют методами экологического тестирования и химических анализов. Показатели качества окружающей среды контролируются согласно действующим нормативам для промышленного и гражданского строительства. Для выявления ареаалов загрязнений проводят гидрохимическое опробование снежного покрова. Снег оценивается как депонирующая среда загрязнений, прежде всего атмосферных. В ареалах загрязнения определяются их источники, спектр загрязнителей, пути миграции, потоки рассеяния и аккумуляция веществ.
Вторая депонирующая среда городских загрязнений — это почвы и грунты, чаше всего урбаноземы. Химическое загрязнение почв и грунтов оценивается по суммарному показателю загрязнения (Zc), который характеризует санитарно-гигиеническое состояние среды.
Суммарный показатель химического загрязнения (Zc), разработанный ИМГРЭ, представляет собой сумму коэффициентов концентрации отдельных химических элементов различных классов опасности и иычисляется по формуле:
Zc = Кc1  + ... + Кc1  + .. + Кcn-(n-1)
С
где n — число определяемых компонентов, Кс — коэффициент концентрации 1-го загрязняющего компонента, равный кратности превышения содержания данного компонента над фоновым значением, Экологическое состояние почв селитебных территорий также оценивается генотоксичностью: ростом числа мутаций по сравнению с контрольным (число раз) и показателями биологического загрязнения, а также числом патогенных микроорганизмов, коли-титром, наименьшей массой почвы в г, в которой содержится 1 кишечная палочка, и содержанием яиц гельминтов. Экологическое состояние почв селитебных территорий считается удовлетворительным при значениях суммарного показателя химического загрязнения (Zc) — не более 16; при числе патогенных микроорганизмов в 1 гпочвы — менее 104; значениях коли-титра — более 1,0. Если яйца гельминтов в 1 кг почвы отсутствуют, то генотоксичность почвы достигает значения 2.
При загрязнении почвы одним компонентом неорганической природы определяется класс опасности элемента, его ПДК и Кс — по одному из четырех критериев эколого-токсикологического состояния (А'|, К2, К3, К4). При превышении максимально допустимых значений принимается решение о необходимости санации и рекультивации почи с учетом факторов риска (табл. 1, 2, 3).
Таблица 1
Критерии оценки степени загрязнения почвы неорганическими веществами

Содержание в почве, мг/кг

Класс опасности соединения

1

2

3

gt;Кткс(концентрации макс)

Очень сильная

Очень
сильная

Сильная

От ПДК до Кмакс

Очень
сильная

Сильная

Средняя

От 2 фоновых значений до ПДК

Слабая

Слабая

Слабая





Таблица 2
Критерии оценки степени загрязнения почвы органическими веществами

Содержание в почве, мг/кг

Класс опасности соединения

1

2

3

gt;5ПДК

Очень
сильная

Сильная

Средняя

От 2 до 5 ПДК

Сильная

Средняя

Слабая

От 1 до 2 ПДК

Средняя

Слабая

Слабая

Загрязнение атмосферы в динамике оценивается по результатам наблюдений стационарной сети Роскомгидромета и по результатам измерений произведенных при гидрометеорологических изысканиях. Степень загрязнения оценивается индексом (ИЗА), который рассчитывается как сумма кратностей превышения над ПДК с учетом класса опасности вещества и суммарного биологического действия загрязнителей воздуха.
Опробование грунтов на содержание легколетучих токсикантов и других загрязнителей, проникающих на глубину до 3-3,5 м (бензол, толуол, ксилол, этилбензол, хлорированные углеводороды, нефть и

Таблица 3
Фоновые содержания валовых форм тяжелых металлов и мышьяка в почвах (мг/кг)
(ориентировочные значения для средней полосы России)

Почвы

Zn

Сd

РЬ

Hg

Сn

Со

Ni

Аs

Дерново-подзолистые песчаные и супесчаные

28

0,05

6

0,05

8

3

6

1,5

Дерново-подзолистые суглинис-тые и глинистые

45

0,12

15

0,10

15

10

30

2,2

Серые лесные

60

0,20

16

0,15

18

12

35

2,6

Черноземы

68

0,24

20

0,20

25

25

45

5,6

Каштановые

54

0,16

16

0,15

20

12

35

5,2

Сероземы

58

0,25

18

0,12

18

12

40

4,5

нефтепродукты), следует производить в шурфах, скважинах и других трных выработках послойно (с глубины 0—0,2; 0,2—0,5; 0,5—1,0 м и лмлее не реже чем через 1,0 м). На территории бывших отвалов, вблизи коллекторов, подземных газовых коммуникаций, хранилищ промышленных и бытовых отходов должен осуществляться отбор проб почвенного воздуха для контроля содержания метана, легколетучих чпорированных углеводородов. Предельно допустимая величина содержания легколетучих хлорированных углеводородов в почвенном воз-лухе не должна превышать 10 мг/м3.
Оценку загрязненности поверхностных и подземных вод производят с целью определения качества воды источников водоснабжения и проверки соблюдения режима зон санитарной охраны водозаборов, а также воды в водных объектах, которые являются путями миграции загрязнений и элементами экологического каркаса города.
К основным контролируемым показателям относятся эпидемическая опасность воды (наличие патогенных микроорганизмов, коли-титр), содержание токсических веществ 1-го и 2-го классов опасности и наличие возбудителей паразитарных болезней и микозов человека. Показатели, характеризующие загрязнение водоисточников и питьевой воды веществами 3-го и 4-го классов опасности, а также физико-химические и органолептические характеристики воды, относится к дополнительным. Классификация веществ по классам опасности  и критерии санитарно-гигиенической  оценки опасности загрязнения питьевой воды и источников питьевого водоснабжения приведены в Приложениях.
В число определяемых химических элементов и соединений в воде входят: тяжелые металлы, мышьяк, фтор, бром, сера, аммоний, цианиды, фосфаты, ароматические соединения (бензол, толуол, ксилол, фенолы), полициклические углеводороды (бенз(а)пирен), хлорированные углеводороды (алифатические, полихлорбифенилы, полиароматические), хлорорганические и фосфорорганические соединения (пестициды), нефть и нефтепродукты, минеральные масла.
Эколого-гидрогеологические исследования чаще всего выполняй в составе инженерно-геологических изысканий. При этом устанавливают наличие водоносных горизонтов, испытывающих негативное влияние в процессе строительства и эксплуатации объекта и подлежащих защите от загрязнения и истощения; условия залегания, распространения и естественную защищенность этих горизонтов (в особенности первого от поверхности); состав, фильтрационные и сорбционные свойства грунтов зоны аэрации и водовмещающих пород; наличие верховодки; глубину залегания первого от поверхности водоупора; закономерности движения грунтовых вод, условия их питания и разгрузки, режим, наличие гидравлической взаимосвязи между горизонтами и с поверхностными водами; химический состав грунтовых вод, их загрязненность вредными компонентами и возможность влияния на условия проживания населения; возможность влияния техногенных факторов на изменение гидрогеологических условий; наличие лечебных вод (ресурсов).
Цель гидрохимических исследований при инженерно-экологических изысканиях — оценка загрязненности поверхностных вод, выявление ареала загрязнения грунтовых вод, определения состава и концентрации загрязнителей, источников загрязнения и оценка влияния этого загрязнения на состояние экосистем и здоровье населения.
Степень санитарно-экологического неблагополучия определяется при отклонении от нормы по нескольким критериям, которые наблюдаются в течение одного года, за исключением загрязнения источников питьевых вод патогенными микроорганизмами и возбудителями паразитарных заболеваний, а также особо токсичными веществами. Особое значение имеет контроль качества воды поверхностных водотоков (реки, ручьи), водоемов (пруды, озера, водохранилища), накопителей сточных вод, коллекторов стока и т.д.
При геоэкологическом опробовании грунтовых вод исследуется верховодка и первый от поверхности водоносный горизонт в зонах влияния хозяйственных объектов с целью определения необходимости их санирования. В табл. 4 приведены критерии оценки степени загрязнения подземных вод, иногда используют зарубежные нормативы.
Радиоэкологические исследования проводятся;, в соответствии с нормами радиационной безопасности населения (НРБ-1999). Основные источники радиоактивного загрязнения окружающей среды — ядерно-технические установки, предприятия, работающие с радионуклидами, хранилища радиоактивных отходов, следы ядерных взрывов и др. Радиоактивными загрязнителями являются техногенные ра-
Таблица 4
Критерии оценки степени загрязнения подземных вод в зоне влияния хозяйственных объектов



Превышение показателей

Определяемые показатели

в зоне эко-

в чрезвычай-

в относитель-



логического

ной экологи-

но удовлетво-



бедствия

ческой ситуа-

рительной





ции

ситуации

1 Основные показатели:







- содержание загрязняющих

gt;100

10-100

3-5

исществ (нитраты, фенолы,







тяжелые металлы, синтети-







ческие поверхностно актив-







ные вещества СПАВ, нефть),







превышение над ПДК*







хлорорганические соедине-

gt;3

1-3

lt;  1

ния, превышение ПДК







канцерогены — бенз(а)пи-

gt;3

1-3

lt; 1

рсн, ПДК







площадь области загрязне-

gt;8

3-5

lt;0.5

ния, км2







минерализация, г/л

gt;100

10-100

lt;3

Пополнительные показатели:







растворенный кислород, мг/л

lt;1

4-1

gt;4

* ПДК — санитарно-гигиенические.
дионуклиды (ТРН), аккумулирующиеся на участках захоронений, санкционированных и несанкционированных свалках, поступающие в почвы, грунты и грунтовые воды в результате аварий, неконтролируемых протечек. Глубина проникновения радионуклидов с поверхности на песчаных грунтах условно принята до 50—100 см, причем основное количество техногенных радионуклидов исследуется в верхнем 10-сантиметровом слое почвы. В радиационно-экологические исследования рекомендуют включать:
  • оценку гамма-фона на территории застройки;
  • определение радиационных характеристик источников водоснабжения;
  • оценку радоноопасности территории.

Степень радиоэкологической безопасности человека, проживающего на загрязненной территории, определяется годовой эффективной дозой радиоактивного облучения от природных и техногенных
источников, доза от техногенных источников не должна превышать 1 мЗв/год (или 0,1 бэр/год). Территории, в пределах которых средне годовые значения эффективной дозы облучения (сверх естественного фона) находятся в диапазоне 5—10 мЗв/год, относят к районах чрезвычайной экологической ситуации, а более 10 мЗв/год — к зонам экологического бедствия. Нормальный естественный уровень мощности эквивалентной дозы (МЭД) внешнего гамма-излучение на открытых территориях в средней полосе России составляет от 0,1 до 0,2 мЗв/час, а в отдельных, например, в предгорных и горных районах — до 0,3 мЗв/час.

При предварительной опенке радиационной обстановки используют данные специальных служб Росгидромета, осуществляющих общий контроль за радиоактивным загрязнением окружающей среды, и центров СЭН (Санитарно-эпидемиологический надзор) Минздрава России, проводящих контроль за уровнем радиационной безопасности населения.
Выявляют и оценивают опасность источников внешнего гамма-излучения с помощью радиационной съемки (определение мощности эквивалентной дозы внешнего гамма-излучения) и радиометрического опробования с последующим гамма-спектрометрическим или радиохимическим анализом проб в лаборатории (определение радионуклидного состава загрязнений и их активности).
Маршрутную гамму-съемку территории следует проводить с одновременным использованием поисковых гамма-радиометров и дозиметров. Поисковые радиометры используются в режиме прослушивания звукового сигнала для обнаружения зон с повышенным гамма-фоном. При этом территория должна быть подвергнута, по возможности, сплошному прослушиванию при перемещениях радиометра по прямолинейным или 2-образным маршрутам. Дозиметры используются для измерения МЭД внешнего гамма-излучения в контрольных точках по сетке, шаг которой определяется в зависимости от масштаба съемки и местных условий. Измерения проводятся на высоте 0,1 м над поверхностью почвы, а также в скважинах, вскрывающих насыпные грунты.
Усредненное, характерное для данной территории числовое значение МЭД, обусловленное естественным фоном, устанавливается местными органами СЭН. Участки, на которых фактический уровень МЭД превышает обусловленный естественным гамма-фоном, рассматриваются как аномальные. В зонах выявленных аномалий гамма-фона интервалы между контрольными точками должны последовательно сокращаться до размера, необходимого для оконтуривания зон с уровнем МЭД gt; 0,3 мЗв/час.
На таких участках для оценки величины годовой эффективной дозы должны быть определены удельные активности техногенных радионуклидов в почве и по согласованию с СЭН решен вопрос о необ- ходимости проведения дополнительных исследований или дезактивационных мероприятий. Масштабы и характер защитных мероприятий определяются с учетом интенсивности радиационного воздействия загрязнений на население.
Объектами радиометрического опробования также являются почвы и грунты различных ландшафтов, поверхностные и подземные воды ( в первую очередь в зоне действующих водозаборов), донные осадки водоемов и техногенные объекты (карьеры, терриконы, свалки, полигоны промышленных и бытовых отходов, склады строительных материа-лов, а также консервируемые объекты с повышенной радиоактивностью).
Радоноопасность территории определяется плотностью потока радона с поверхности грунта и содержанием радона в воздухе построенных зданий и сооружений. Оценка потенциальной радоноопасности территории определяется по геологическим и геофизическим признакам. К  геогологическим признакам относятся: наличие определенных петрографических типов пород, разрывных нарушений; сейсмическая активность территории, присутствие радона в подземных водах и выходы радоновых источников на поверхность. Геофизические признаки включают высоко удельную активность радия в породах, слагающих геологический рарез. Измеряются уровни объемной активности (ОА) радона (концентрация) в почвенном воздухе, ЭРОА радона в зданиях и сооружениях, эксплуатируемых на исследуемой территории и в прилегающей зоне.
Наличие данных о зарегистрированных значениях эквивалентной равновесной объемной активности (ЭРОА) радона, превышающих 100 Бк/м, в эксплуатируемых в исследуемом районе зданиях служит основанием для классификации территории как потенциально радоноопасной. На предпроектных стадиях должна быть выполнена предварительная оценка потенциальной радоноопасности территории. На стадии проекта производится уточнение радоноопасности площадки и определение класса требуемой противорадоновой защиты зданий.
Все измерения физических характеристик среды, определяющих рлдиационно-экологическую обстановку, должны заноситься в банки мнных территориальных изыскательских организаций, территориальных подразделений по охране окружающей среды и СЭН.
Газо-геохимические исследования выполняют на участках насыпных грунтов с примесью строительного, промышленного мусора и бытовых отходов (участках несанкционированных бытовых свалок) мощностью более 2,0-2,5 м, использование которых для строительства требует проведения работ по рекультивации территории. Основная опасность использования насыпных грунтов в качестве основания сооружений связана с их способностью генерировать биогаз, состоящий из горючих и токсичных компонентов.
Главные из них — метан (до 40-60% объема) и двуокись углерода. В качестве примесей присутствуют: тяжелые углеводородные газы, окислы азота, аммиак, угарный газ, сероводород, молекулярный водород
и др. Биогаз образуется при разложении «бытовой» органики в результате жизнедеятельности анаэробной микрофлоры в грунтовой толще на глубине более 2,0—2,5 м. В верхних аэрируемых слоях грунтовых толщ происходит аэробное окисление органики и продуктов биогазообразования. Биогаз сорбируется вмещающими насыпными грунтами и отложениями естественного генезиса, растворяется в грунтовых водах и верховодке и диссипирует в приземную атмосферу.
При строительстве на насыпных грунтах возникает опасность накопления биогаза в технических подпольях зданий и инженерных коммуникациях до пожаро- и взрывоопасных концентраций по метану (5-15% при О2gt; 12,1%)* или до токсичных содержаний (выше ПДК) отдельных компонентов. Потенциально опасными в газо-геохимическом отношении считаются грунты с содержанием метана gt; 0,1% и СО2 gt; 0,5%; в опасных грунтах содержание метана gt; 1,0% и СО2 до 10%; пожаро- и взрывоопасные грунты содержат метана gt; 5,0%, при этом содержание СО2 —n—10%.
В связи с этим необходимо проводить различные виды поверхностных газовых съемок (шпуровую, эмиссионную), которые сопровождаются отбором проб грунтового воздуха и приземной атмосферы; скважинные газо-геохимические исследования (с послойным отбором проб грунтового воздуха, грунтов, подземных вод) и лабораторные исследования компонентного состава свободного грунтового воздуха, газовой фазы грунтов, растворенных газов и биогаза, диссипи-рующего в приземную атмосферу.
Экологически опасные зоны (при содержании СН4 gt; 1,0% и СО2 gt; 10%), из которых грунты полностью удаляются с территории строительства и заменяются на газогеохимически инертные, а также потенциально опасные зоны, в которых здания и инженерные сети обустраиваются газодренажными системами или газонепроницаемыми экранами, должны быть показаны на картах и разрезах.
Исследование вредных физических воздействий (электромагнитного излучения, шума, вибрации, тепловых полей и др.) проводятся при разработке градостроительных проектов на освоенных территориях. Фиксируются основные источники вредных физических воздействий, его интенсивность и зоны дискомфорта. Для оценки физических воздействий специально измеряют компонент электромагнитного поля в различных диапазонах частот, амплитудного уровня и частотного состава вибраций от различных промышленных, транспортных и бытовых источников, шумов и др.
Оценка воздействия электромагнитного излучения на организм человека включает оценку влияния электрического и магнитного полей, создаваемых высоковольтными линиями электропередачи пере-
* Здесь и далее концентрации газа приведены в объемных процентах.
менного тока промышленной частоты (ЛЭП), а также высоковольтными установками постоянного тока (электростатическое поле) для ромагнитных полей радиочастот, включая метровый и дециметровый диапазоны волн телевизионных станций.
Предельно допустимые уровни (ПДУ) напряженности электрических полей промышленной частоты (50 Гц), установленные ГОСТом 12.1.002-84 и СанПиН 2971-84, представлены в табл. 5.
Таблица 5
Предельно допустимые уровни (ПДУ) напряженности электрического поля

Место, территория

Напряженность (Е), кВ/м

Внутри жилых зданий

0,5

На территории зоны жилой застройки

1

В населенной местности вне зоны жилой застройки

5

На участке пересечения высоковольтных пиши с автодорогами 1— IV категории

10

К ненаселенной местности, доступной для транспорта

15

В труднодоступной местности

20

Напряженность (Е) электрического поля определяется на высоте 2,0 м от уровня земли (пола).
Согласно действующим нормам проектирования границы санитарно-защитных зон (СЗЗ) вдоль высоковольтных ЛЭП устанавливаются но величине Е, которая не должна превышать 1 кВ/м, и отстоят по обе стороны от проекции крайних фазовых проводов на землю на расстояние: 10 м для линий напряжением 20 кВ; 15 м — 35 кВ; 20 м — 110 кВ; 25 м - 150, 220 кВ; 30 м - 330, 500 кВ; 40 м - 750 кВ; 55 м - 1150 кВ.
В СЗЗ запрещено строительство жилых и общественных зданий и отвод земельных участков (включая садовые) для постоянного прерывания населения. Расстояние от границ населенных пунктов до оси проектируемых ЛЭП напряжением 750—1150 кВ должно быть не менее 250—300 м. Интенсивность магнитных полей (МП) оценивается по величине магнитной индукции в теслах (ОБУВ 4,0—6,5 МТ) или по амплитудному значению напряженности в амперах на метр (1 МТ = 800 А/м; ОБУВ 3,2-5,2 кА/м). Допустимая напряженность электростатического поля, создаваемого высоковольтными установками постоянного тока, составляет 60 кВ/м максимально (при кратковременном воздействии на человека). При воздействии электромагнитных полей, создаваемых радиотехническими объектами, нормируются показатели напряженно- ста электрического поля Е, энергетическая нагрузка Е2Т, поверхностная плотность потока энергии.
ПДУ для населения составляет для диапазона частот, МГц:
  • 0,06-3 Е - 600 В/м; Е2Т 28 800 (В/м)2ч;
  • 3-30 Е - 300 В/м; Е2Т 7200 (В/м)2ч;
  • 30-300 Е-5-2,5 В/м;
  • 300—3000 — 10 мкВт/см2 (поверхностная плотность потока энергии).

Санитарными нормами устанавливаются допустимые значения обычного шума, инфра- и ультразвука на территории жилой застройки и в помещениях, нормируются показатели виброускорения, виброскорости и вибросмешения в жилой застройке и на промышленных объектах. Расположение источников и зон дискомфорта, обусловленных физическим воздействием (радиационным загрязнением, элекромагнитным излучением, шумом, тепловыми полями), фиксируется на экологических картах.
Геоботанические исследования начинают с изучения карт растительности и дешифрирования аэрокосмических снимков. Растительность рассматривается в качестве индикатора уровня антропогенной нагрузки на природную среду (вырубки, гари, перевыпас скота, механическое нарушение при рекреации, повреждение техногенными выбросами, антропогенные сукцессии, изменение видового состава, уменьшение проективного покрытия и продуктивности). Дается характеристика типов зональной и интразональной растительности в соответствии с ландшафтной структурой территории, распространения основных растительных сообществ; лесотаксационные характеристики и использование лесов; использование и состояние естественной травянистой и болотной растительности, встречаемости редких и исчезающих видов, режим их охраны, характеристика агроценозов и их продуктивность.
Прогнозируемые изменения в растительном покрове даются при сравнении с естественными растительными сообществами, биоразнообразием, присущим тому или иному зональному типу ландшафтов. Ареалы негативных нарушений растительности отражаются на тематических экологических картах.
Исследования животного мира проводятся на основе опубликованных и фондовых материалов. При необходимости проектируются полевые наблюдения, включая экологический мониторинг. Определяются виды животных по типам ландшафтов в зоне воздействия объекта, подлежащие прежде всего охране. Устанавливаются особо ценные виды, места обитания (для рыб — места нереста, нагула и др.). Производят оценку состояния функционально значимых популяций типичных и миграционных видов животных, пути их миграции, запасы промысловых животных и рыб, мест размножения, пастбищ и т.д.
Прогнозируемые изменения животного мира-аналога должны быть обоснованы и опираться на статистическую обработку.
Социально-экономические исследования рассматриваются как самостоятельный раздел инженерно-экологических изысканий для строительства, обеспечивающий перспективы социально-экономического развития региона, сохранение его ресурсного потенциала, соблюдение исторических, культурных, этнических и других интересов местного населения. Они включают изучение социальной сферы (численности, этнического состава населения, занятости, системы расселения и динамики населения, демографической ситуации, уровня жизни); медико-биологические и санитарно-эпидемиологические следования; обследование и оценку состояния памятников архитектуры, истории, культуры.
Медико-биологические и санитарно-эпидемиологические исследования проводят для оценки экологической обстановки и современного состояния, прогноза возможных изменений здоровья населения под влияниям экологического и санитарно-эпидемиологического состояния территории при реализации проектов строительства.
Оценка экологических условий должна включать покомпонентную оценку воздействия состояния среды обитания (воздуха, питьевой воды, почв, продуктов питания, объектов рекреации и других факторов) на здоровье человека на основе установленной системы санитарно-гигиенических критериев. Состояние и степень ухудшения здоровья населения должны оцениваться на основе установленных медико-демографических критериев: рождаемость, смертность, заболеваемость и т.д.
Стационарные наблюдения при инженерно-экологических изысканиях (локальный экологический мониторинг или мониторинг пригодно-технических систем) выявляют тенденции количественного и качественного изменения состояния окружающей среды в пространстве и во времени в зоне воздействия объектов. Стационарные экологические наблюдения должны включать:
  • систематическую регистрацию и контроль показателей состояния окружающей среды в сферах воздействия источников влияния;
  • прогноз возможных изменений состояния компонентов окружающей среды на основе выявленных тенденций;
  • разработку рекомендаций и предложений по снижению и исключению негативного влияния объектов на окружающую среду;
  • контроль за использованием и эффективностью принятых рекомендаций по нормализации экологической обстановки.

Стационарные экологические наблюдения проводят:
  • при проектировании и строительстве объектов повышенной экологической опасности (предприятий нефтехимической, горнодобывающей, целлюлозно-бумажной промышленности, черной и цветной металлургии, микробиологических производств, ТЭЦ, АЭС, установок по обогащению ядерного топлива,  нефте- и газопроводов и др.);
  • при проектировании и строительстве жилищных объектов и комплексов в районах с неблагоприятной экологической ситуацией,
  • при проектировании и строительстве объектов в районах с повышенной экологической чувствительностью природной среды к внешним воздействиям (на территориях, подверженных действию опасных геологических и гидрометеорологических процессов, в районах распространения многолетнемерзлых грунтов, вблизи особо охраняемых территорий, заповедных и водо-охранных зон и т.п.).

Оптимальная организация стационарных наблюдений (локального экологического мониторинга) предваряется обследованием с целью выявления основных компонентов природной среды, нуждающихся в мониторинге, определения системы наблюдаемых показателей, измерения фоновых значений; ландшафтного обоснования сети.
Следующий этап — проектирование постоянно действующей системы экологического мониторинга, оборудование и функциональное обеспечение, организация взаимодействия с аналогичными системами других ведомств. Основной этап — проведение стационарных наблюдений с целью определения тенденций изменения показателей состояния природной среды, отслеживания и моделирования экологической ситуации для краткосрочных и долгосрочных прогнозов.
Программа мониторинга устаналивает:
  • виды мониторинга (инженерно-геологический, гидрогеологический и гидрологический, мониторинг атмосферного воздуха, почвенно-геохимический, ландшафтный, фитомониторинг, мониторинг обитателей наземной и водной среды);
  • перечень наблюдаемых параметров;
  • обоснование сети наблюдений в пространстве;
  • методику проведения всех видов наблюдений;
  • частоту, временной режим и продолжительность наблюдений;
  • нормативно-техническое и метрологическое обеспечение наблюдений.

Виды мониторинга и перечень наблюдаемых параметров обусловлены механизмом техногенного воздействия (физическое, химическое, биологическое) и компонентами природной среды, на которые распространяется воздействие (атмосфера, литосфера, почвы, поверхностные и подземные воды, растительность, животный мир, наземные и водные экосистемы и ландшафты в целом и т.п.).

<< | >>
Источник: Дьяконов К. П.,Дончева Л. В.. Экологическое проектировагние и экспертиза: Учебник длявузов. — М.: Аспект Пресс. - 384 с.. 2005

Еще по теме 6.6.Инженерно-экологические изыскания для экологического обоснования градостроительных проектов:

  1. Глава 9.    ЭКОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ ГРАДОСТРОИТЕЛЬНЫХ ПРОЕКТОВ
  2. 6.2. Техническое задание на выполнение инженерно-экологических изысканий
  3. 6.5.Технический отчет по результатам инженерно-экологических изысканий
  4. Глава 6.    ИНЖЕНЕРНО ЭКО ЛОГИЧЕСКИ Е, ИЗЫСКАНИИ ПРИ ЭКОЛОГИЧЕСКОМ ПРОЕКТИРОВАНИИ
  5. 6.1. Цели, задачи, уровни, нормативная основа инженерно-экологических изысканий
  6. Приложение 1 Перечень основных нормативных документов, применяемых при инженерно-экологических изысканиях*
  7. 9.2.Экологическое обоснование проектов
  8. ЭКОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ ПРОМЫШЛЕННЫХ ПРОЕКТОВ
  9. 10.1. Процедура экологического обоснования инвестиционных проектов
  10. 10.6. Требования к экологическому обоснованию в предпроектах и проектах строительства промышленных объектов
  11. Глава 7. ЭКОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ ТЕХНОЛОГИЙ И НОВЫХ МАТЕРИАЛОВ
  12. 10.2.Экологическое обоснование выбора способа производства и размещения
  13. 8.2. Экологическое обоснование использования природных ресурсов
  14. 8.3. Экологическое обоснование лицензий на выбросы, сбросы и отходы
  15. 7.4.Экологическая экспертиза обоснования технологических решений