12.2. Пространственно-временная организация сферы влияния водохранилищ


В 60—70-е годы XX в. в связи с актуальностью проектов территориального перераспределения стока северных рек на юг возросло внимание к проблемам взаимодействия крупных равнинных водохранилищ с ландшафтами окружающей территории.
Значительный вклад врешение этой проблемы внесли работы А. Б. Авакяна, С. Л. Вендрони К. Н. Дьяконова, А. Г. Емельянова, Ю. М. Матарзина, И. Г. Мельничеп ко, Г. С. Золотарева, Л. К. Малик, А. Ю. Ретеюма, В. М. Широкова В. М. Стародубцева, Р. С. Чалова, В. А. Шарапова, К. К. Эдельштейна В. Н. Экзарьяна и др. На основании этих работ составлена схема влияния водохранилищ на окружающую территорию (рис. 27).


Район верхнего бьефа
Взаимодействие водохранилища с ландшафтами осуществляется через поверхностные и грунтовые воды, воздушные массы и животный мир. Переработка берегов водохранилищ (термин предложен академиком Ф. П. Саваренским в начале 30-х годов при проектировании водохранилищ Волжского каскада) определяется локальными и фоновыми физико-географическими факторами.
1. Первоначальным к моменту заполнения чаши водоема рельефом.
2. Степенью выветренности горных пород, их сопротивляемостью к размыву под динамическим воздействием волн, сопротивляемостью растворению» при смачивании.
3. Комплексом гидрометеорологических условий, среди которых определяющее значение имеют ветровой режим и продолжительность безморозного периода.
4. Комплексом химических и биохимических факторов, определяющих в конкретных условиях интенсивность «химической абразии» и карстовые провалы. Это актуально для побережий Камского, Усть-Илимского и ряда горных водохранилищ в Средней Азии и Закавказье.

5. Биологическими свойствами водоема, в частности интенсивностью развития планктона, гидромакрофитов. В значительных скоплениях они способны нейтрализовать ветровое волнение и тем самым резко уменьшить интенсивность процесса абразии и размыва дна.
6. Количеством наносов, поступающих в водохранилище, и их источниками. На крупных равнинных водохранилищах обычно 70% взвешенных наносов местного происхождения, за счет размыва дна на мелководьях и берегов. Остальное количество поступает с водосбора через притоки. В аридных районах возрастает роль атмосферного переноса пыли.
7. Амплитудой колебаний уровня грунтовых вод, смачиванием бровки и склонов береговых массивов атмосферными осадками, объемом и режимом талых вод.
Коренное отличие водохранилищ от озер заключается в том, что от плотины вверх по бывшей реке новый водоем имеет несколько гидрологических зон, каждая из которых характеризуется специфическими гидро- и морфодинамическими особенностями и взаимодействием с ландшафтами прилегающей территории.
С. Л. Вендровым выделено четыре зоны (рис. 28).
Глубоководная нижняя зона, где при всех уровнях волнение развивается свободно, не взаимодействуя, за исключением прибрежной полосы, с дном. Динамические условия близки к морским или глубоководным озерам. Наносы аккумулируются только на глубине за пределами зоны сработки. Влияние на климат максимально.
Промежуточная зона средних глубин в зависимости от положения уровня воды может быть либо глубоководной (при уровнях близких к НПУ), либо мелководной (при низких отметках уровня).
Мелководная верхняя зона, где при любых положениях уровня сохраняются условия мелкого озера. Развитие волнения ограничено влитием дна. Волновая переработка берега малоинтенсивна. Здесь откладывается значительная часть приносимых рекой наносов и быстро формируется прибрежная отмель. Климатическое влияние ослаблено наблюдаются изменения в микроклимате.
Зона выклинивания подпора, в которой даже при самом высоком горизонте воды сохраняются условия мелководного залива. По мере снижения уровня она обсыхает и становится «поймой» водохранилища. Активно идут эрозионно-аккумулятивные процессы. Развит процесс регрессивной аккумуляции, связанный со снижением скорости потока и отложением наносов.
Еще выделяют разорванные ареалы зон небольших заливов, в которых идет процесс аккумуляции материала, поставляемого склоновым стоком.
Классификация берегов по их генезису была разработана И. А. Печеркиным, С. Л. Вендровым и В. М. Широковым. Выделяют берега абразионные (обвально-осыпные, оползневые, закарстованные), аккумулятивные и устойчивые. Наибольший практический интерес предтавляют абразионные берега. Это связано с большой интенсивностью их размыва, особенно впервые пять лет существования водохранилища. Ширина зоны переработки берегов в конечную стадию составляет 200-300 м и более. Наиболее интенсивно абразия берегов идет на водохранилищах Сибири, что связано с криогенными процессами в условиях экстраконтинентального климата. Из общей протяженности берегов существующих и строящихся водохранилищ Сибири (30 тыс. км) около 10 тыс. км затронуты процессами их переработки.
На развитие абразионных процессов на водохранилищах, расположенных в зоне многолетней мерзлоты, оказывают большое влияние термормокарстовые процессы. Для горных водохранилищ характерны свои особенности переформирования берегов, обусловленные малой ролью ветрового волнения, большой амплитудой колебания уровня (до десятков метров), преобладанием прочных горных пород. Большую роль играют геодинамические процессы, поставляющие материал в акваторию, — выветривание горных пород, осыпи, обвалы, оползни.
В настоящее время протяженность абразионных, оползневых, осыпных, обвальных и других отступающих берегов составляет не менее 20 тыс. км, а объем ежегодно перерабатываемых горных пород — более 300 млн м3.
Следует особо сказать о сравнительно недавно открытом виде влития крупных водохранилищ на окружающую геологическую среду. Они активизируют движения земной коры в сейсмически активных регионах, вызывая даже небольшие наведенные землетрясения. Зарегистрированы тектонические движения в районах создания водохранилищ Кариба, Гранвил, Мид, Нурекского и др.
В прибрежной зоне водохранилищ происходят направленные изменения в положении зеркала грунтовых и почвенных вод. Наблюдаются два процесса: фильтрация воды в берег и подпор грунтовых вод со стороны водохранилища. Помимо направленных изменений отмечаются ритмические колебания, обусловленные в подзоне прямого гидрогеологического воздействия колебаниями уровня водохранилища.
Ширина этой подзоны — 300-400 м. Далее следует подзона косвенного влияния, где сезонная ритмика увлажнения в первую очередь обусловлена метеорологическими условиями, но после создания водохранилища уже впервые 5-10 лет отмечен подъем зеркала грунтовых вод. Ширина этой подзоны может достигать 1-3 км, а в ослабленном виде проявляться на расстоянии до 5—6 км по долинам подтопленных рек и ручьев (Камское, Иваньковское и др. водохранилища)
Анализ проектов создания водохранилищ ГЭС при их экспертизах показывает, что гидрогеологами (Г. Н. Каменский, В. М. Шестаков и др.) создана надежная методика расчета ширины зоны гидрогеологического влияния, а отдельные ошибки связаны с недоучетом местных ландшафтных условий.
В районе верхнего бьефа водохранилища формируются зоны, подзоны и пояса влияния, образующие его сферу воздействия.
Зона влияния — ареал, выделяемый как по изменению одного     из компонентов ландшафта (зона климатического или гидрогеологического влияния), так и ПТК в целом. Подзона влияния территория, где либо происходит структурная перестройка ПТК необратимые смены (в таком случае это подзона прямого влияния), либо выявлены отдельные изменения в свойствах ПТК при сохранении прежнего инварианта (подзона косвенного ил ослабленного влияния). Пояс влияния — территория в предел; одной зоны, отличающаяся от соседней знаком (направленностью) воздействия.
Учитывая актуальность экологического обоснования проектирования крупных ГЭС в лесной зоне России и высокую степень изучености проблемы взаимодействия водохранилищ с лесными ландшафтами, рассмотрим новые черты пространственно-временной организации их сферы влияния.
Полнота строения и специфика зон и сфера влияния определяют сочетанием четырех важнейших факторов — механическим составом почвообразующих пород, углом наклона рельефа, степенью защиты от ветрового волнения и типом уровенного режима водохранилища за вегетационный период.

Комбинация этих факторов выделяет пять видов зон влияния:
I — обширная с полным набором зон, подзон и поясов. Характерен для берегов, сложенных песками и супесями, пологих и закрытых от ветрового волнения, где преобладает 1-й и 2-й типы режима уровня;
II — обширная с неполным набором поясов (отсутствует пояс сильного подтопления). Характерен для открытых абразионных берегов, с преобладанием 1-го и 2-го типов режима уровня водохранилища;
III —укороченная с полным набором зон и поясов. Вид приурочен к берегам относительно крутым и сложенным легкими суглинками;
IV — укороченная с неполным набором поясов и подзон (без пояса сильного подтопления на крутых абразионных берегах, сложенных суглинистыми породами; только с поясом сильного подтопления на пологих берегах, сложенных легко- и среднесуглинистыми породами);
V — укороченная, с поясами периодического затопления, умеренного и слабого подтопления на водохранилищах, где преобладает 3-й тип режима уровня.

Глубокая дифференциация знака, интенсивности воздействия в различных ландшафтах, неоднозначная плановая проекция ареалов в зависимости от выбранного индикатора влияния — один из важнейших выводов анализа сферы влияния искусственных водоемов.
В подзоне прямого влияния водохранилищ лесной и лесостепной он прослеживаются следующие пояса.
1. Периодического затопления; он располагается между уровнем минимальной сработки и уровнем максимальной форсировки. Распределение новых ПТК подчинено вероятности затопления и носит микропоясной характер.
2. Сильного подтопления, отрицательного влияния; его верхняя граница на разных водохранилищах колеблется от 0,45 до 1,2 м над НПУ. Ширина пояса — первые сотни метров, а по заливам и долинам затопленных рек — до нескольких километров; на берегах, сложенных лессовидными суглинками, за счет капиллярного поднятия влаги граница пояса может превосходить 2 м над НПУ. В этом поясе наблюдается полная структурно-функциональная перестройка существовавших ранее ПТК. Вымочка леса происходит до высоты 0,6—0,8 м над НПУ. Леса замещаются низинными болотами. Выше указанных отметок наблюдается угнетение древостоя, снижение в 1,3-2 раза прироста, падение бонитета на 11—111 класса. Различные типы леса в поясе сильного подтопления трансформируются в осоково-травяные типы наторфянисто-подзолисто-глеевых, торфяно-глеевых почвах. Стадии и смены в лесных ПТК в при-нрежной зоне водохранилищ рассмотрены в работах К. А. Кудинова, Д. Г. Емельянова, К. Н. Дьяконова, А. И. Русаленко и др.

3. Переходный, нарастающего и уменьшающегося подтопления. Занимает территорию в пределах 0,5—1,3 м над НПУ. В годы с высоким стоянием уровня водохранилища и почвенно-грунтовых вод наблюдается активизация процессов заболачивания, а в годы с низким уровнем улучшение аэрации и увеличение фитопродукции ландшафта.
4. Умеренного и слабого подтопления, обычно положительного воздействия на биопродуктивность ландшафтов. Внешняя граница до 3—3,5 м над НПУ; ширина в подзоне прямого влияния до 400 Наибольшее увеличение прироста древесного яруса наблюдается в т ПТК, в которых до создания водохранилищ грунтовые воды располагались ниже корнеобитаемого слоя (сосняки лишайниковые, зеленомошные, чернично-зеленомошные).
В подзоне косвенного влияния прослеживаются пояса увеличений и снижения биологической продуктивности. Ее ширина может превосходить 1-2 км.
Важно подчеркнуть, что сезонная и годовая хроноорганизация процессов в подзоне прямого влияния обнаруживает связь с уровнем во хранилища. Это проявляется в связи уровня водохранилища с ежегодным приростом деревьев (рис. 29), также с численностью и видовым разнообразием млекопитающих, продукцией фитомассы лугов, содержанием кислорода в грунтовых водах, степенью оглеения почв.
Влияние водохранилищ на ландшафты в степной, полупустыни и пустынной зонах имеет свою специфику. Она заключается в том,  что на смену процессу подтопления приходит процесс засоления
Влияние крупных водохранилищ, особенно таких как Братск Куйбышевкое, Рыбинское, Бухтарминское л др., на местный климат выражено довольно четко.
Альбедо водной поверхности при высоте Солнца более 20 колеблется от 6 до 12% и всегда меньше альбедо поверхности суши. Поэтому радиационный баланс водохранилищ (Rв) обычно на 15—20% больше радиационного баланса суши (Rc). Осенью за счет увеличения роли эффективного излучения в радиационном балансе и более теплой водой поверхности по сравнению с сушей Rв lt;Rc.

Индикатором на интенсивность влияния водохранилища выступает разность температур поверхности воды и воздуха на окружающей территории (вне зоны влияния) -Тп-t. Она зависит от глубины водохранилища и его географического положения (рис. 30). Влиянию водохранилища на местный климат свойственны два периода: охлаждающего и отепляющего воздействия. Снижение средней месячной температуры воздуха в первом километре от уреза в апреле—июне равно 0,5—2,5 °С; на сибирских водохранилищах — 1,0—3,5 °С, главным образом за счет большего промерзания водоемов (толщина льда на водохранилищах Сибири достигает 1—1,2 м; на водохранилищах европейской части страны — 0,6—0,8 м).
Весной переход температуры воздуха через 5 и 10° запаздывает на берегах на 3-7 суток, что сказывается на прохождении растениями фенологических фаз; осенью наблюдается сдвиг дат перехода температуры воздуха через 10,5 и 0° на более поздние сроки, на мелких водохранилищах на 3-5 дней, на глубоководных — на 5-10 дней. Продолжительность безморозного периода на побережье возрастает весной на 1-4, осенью — на 9—14 (на глубоководных до 20) дней.
Соотношение периодов охлаждающего и отепляющего влияния водохранилищ на уровне дневных и ночных температур воздуха различно. Чаще всего этот факт не учитывается в прогнозе влияния водохранилища на климат. Охлаждающий эффект водохранилищ в дневное время проявляется до начала августа, а отепляющий ночью с середины мая на водохранилищах европейской территории России и с июня в условиях Сибири. Максимальные значения охлаждающего эффекта днем в апреле-мае (2,5—4,5 °С), отепляющего — ночью в августе—сентябре (2,5—3,5 °С).
Относительная влажность воздуха в дневные часы всегда выше на берегу (на 4—16%) по сравнению с территорией, на которую влияние водохранилища не распространяется, а ночью — ниже на несколько
процентов. Абсолютная влажность воздуха в прибрежной зоне вышt на 0,5-2,0 мБ.
Водохранилище снижает число пасмурных дней по нижней облачности весной и летом на 10-20% и увеличивает число ясных дней до 30%. Над акваторией и плоскими берегами по сравнению с территорией более высокой и удаленной на 5-10 км за теплый период выпадает ни 10—20% атмосферных осадков меньше, так как в период охлаждающем) влияния конвенктивная облачность развита над водоемом меньше.
В течение всего теплого периода, за исключением апреля и первой половины мая, скорость ветра в прибрежной зоне выше, причем различия в августе—октябре достигают 1,0-2,2 м/с. На берегах всех води хранилищ развита бризовая циркуляция, влияющая на погоду и формирующая специфические черты местного климата на крупных водохранилищах на расстоянии до 5-8 км.
Бризовая циркуляция определяет размеры ареала влияния. Активное устойчивое влияние прослеживается до 3—5 км от берега, эпизодическое — до 10-15 км.
В нижнем бьефе (ниже плотины) отчетливо прослеживаются зоны гидрологического, гидрогеологического и климатического влиянии Внутригодовое перераспределение стока и его частичное изъятие и период наполнения чаши вызывают значительно большие изменения в аридной зоне, чем в гумидной, причем в степной и полупустынной зонах влияние в нижнем бьефе по площади обычно превосходит влияние в верхнем бьефе. Оценка эффекта изменений режима пойменных и грунтовых вод дифференцирована в зависимости от зональных и региональных условий.
В лесной зоне европейской территории страны, Западной и Сред ней Сибири регулирование стока рек водохранилищами при избытоном пойменном увлажнении снимает продолжительность весенне-летнего половодья, что в ряде случаев благоприятно для пойменных луговых комплексов.
Однако при этом резко снижается поступление наилка, нарушается главное звено формирования плодородия пойменных почв.
В условиях муссонного климата Дальнего Востока срез летнего пика половодья благоприятно влияет на условия сельскохозяйственно производства. Классическим примером является Зейское водохранилище, позволившее снизить интенсивность и продолжительность летне-осенних паводков на протяжении 640 км от плотины до устья рек
Существенные негативные изменения пойменных комплексов наблюдаются в нижних бьефах аридных районов, где снижение водное связано также с водозабором воды на орошение. Происходит опустынивание и засоление ландшафтов, снижение их биологической продуктивности в несколько раз. Классические примеры — пойма Иртыш ниже плотины Бухтарминской и Усть-Каменогорской ГЭС, где влияние водохранилища сказывается на расстоянии до 1500 км; Волго-Ахтубинская пойма, нижний бьеф Капчагайского водохранилища и др. Фактором снижения биопродукции пойменных лугов выступает и более холодная вода в летний период (на 6-10°), поступающая в нижний бьеф на сибирских водохранилищах. Заметны различия в температуре на Каховском водохранилище (в мае на 2,5°). Зимний попуск относительно теплых вод приводит к образованию туманов на протяжении нескольких десятков километров (Красноярское, Зейское и др. водохранилища). Изменение гидротермических условий в нижнем бьефе, в частности образование в зимний период незамерзающей полыньи, коренным образом отражается на путях миграции животных.
  
<< | >>
Источник: Дьяконов К. П.,Дончева Л. В.. Экологическое проектировагние и экспертиза: Учебник длявузов. — М.: Аспект Пресс. - 384 с.. 2005

Еще по теме 12.2. Пространственно-временная организация сферы влияния водохранилищ:

  1. 13.3.Пространственно-временная организация зон влияния осушитсльных систем
  2. § 2. ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ КОНТИНУУМ ПОЛИТИЧЕСКОЙ СФЕРЫ. МИКРО-, МАКРО- И МЕГАПОЛИТИКА
  3. Моделирование пространственно-временных факторов.
  4. Глеб Алексеевич Архангельский. Организация времени. От личной эффективности к развитию фирмы. «Организация времени»: Питер; СПб., 2008
  5. 7.2. Расширение сферы влияния бренда 7.2.1. Гармоничные решения проблем
  6. Влияние денег на социальное конструирование времени
  7. 4.4. Результативность работы продавцов: факторы влияния и использование рабочего времени
  8. Глава12 ФИНАНСЫ ОРГАНИЗАЦИЙ СОЦИАЛЬНОЙ СФЕРЫ
  9. 12.4. Реформирование организаций социальной сферы
  10. Глава 12.  ГЕОЭКОЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ ВОДОХРАНИЛИЩ ГЭС
  11. ГЛАВА НАЛОГОВЫЙ УЧЕТ В ОРГАНИЗАЦИЯХ НЕКОММЕРЧЕСКОЙ СФЕРЫ
  12. 12.3.Оценка воздействия водохранилищ на окружающую среду
  13. 12.3. Формирование финансовых ресурсов организаций социальной сферы
  14. 12.1. Назначение, классификации и специфика водохранилищ